Cienzar
  • Início
  1. Você está aqui:  
  2. Início
  3. mqml

Ψ = R . Y

n = 1

$Z=1, a_{0}=1$

$\alpha=\frac{2Z}{n.a_{0}}=\frac{2 \cdot 1}{1_x1}=2$

l = 0

$\mathcal{\vec{R}} = \xi(e^{-\frac{\vec{\rho}}{2}})(\vec{\rho})^{l}f_{\text{lag}}(\beta,\gamma,\vec{\rho}) = 1.4142(e^{-\frac{\vec{\rho}}{2}})(\vec{\rho})^{0}f_{\text{lag}}(0,1,\vec{\rho})$

$\beta = (n-l-1) = (1-0-1) = 0$

$\gamma = (2l + 1) = (2 \cdot 0 + 1) = 1$

$\lambda = (n + l) = (1 + 0) = 1$

$\xi = \sqrt{\frac{\alpha^{3} \beta!}{2n (n+1)!}} \cdot \frac{1}{\lambda!} = \sqrt{\frac{2^{3} \cdot 0!}{2 \cdot 1 (1+1)!}} \cdot \frac{1}{1!} = 1.4142$

$\vec{\rho} = \alpha \vec{r} = 2\vec{r}$

m = 0

$\vec{\sigma} = e^{im\vec{\phi}} \cdot f_{\text{leg}}(l,m,\cos(\vec{\theta})) = e^{i0\vec{\phi}} \cdot f_{\text{leg}}(0,0,\cos(\vec{\theta}))$

$\mathcal{\vec{Y}} = f_{\text{ang}}(l,m,\vec{\theta},\vec{\phi}) = (-1)^m \cdot \sqrt{\frac{2l + 1}{4\pi} \cdot \frac{(l-m)!}{(l+m)!}} \cdot \vec{\sigma} = f_{\text{ang}}(0,0,\vec{\theta},\vec{\phi}) = (-1)^0 \cdot \sqrt{\frac{2 \cdot 0 + 1}{4\pi} \cdot \frac{(1-0)!}{(1+0)!}} \cdot \vec{\sigma} = 0.28209 \cdot \vec{\sigma}$

n = 2

$Z=1, a_{0}=1$

$\alpha = \frac{2Z}{n \cdot a_{0}} = \frac{2 \cdot 1}{2_x1} = 1$

l = 0

$\mathcal{\vec{R}} = \xi\left(e^{-\frac{\vec{\rho}}{2}}\right)(\vec{\rho})^{l} f_{\text{lag}}(\beta, \gamma, \vec{\rho}) = 0.10206\left(e^{-\frac{\vec{\rho}}{2}}\right)(\vec{\rho})^{0} f_{\text{lag}}(1, 1, \vec{\rho})$

$\beta = (n-l-1) = (2-0-1) = 1$

$\gamma = (2l + 1) = (2 \cdot 0 + 1) = 1$

$\lambda = (n + l) = (2 + 0) = 2$

$\xi = \sqrt{\frac{\alpha^3 \beta!}{2n (n+1)!}} \cdot \frac{1}{\lambda!} = \sqrt{\frac{1^3 \cdot 1!}{2 \cdot 2 (2+1)!}} \cdot \frac{1}{2!} = 0.10206$

$\vec{\rho} = \alpha \vec{r} = 1 \vec{r}$

m = 0

$\vec{\sigma} = e^{im\vec{\phi}} \cdot f_{\text{leg}}(l, m, \cos(\vec{\theta})) = e^{i0\vec{\phi}} \cdot f_{\text{leg}}(0, 0, \cos(\vec{\theta}))$

$\mathcal{\vec{Y}} = f_{\text{ang}}(l, m, \vec{\theta}, \vec{\phi}) = (-1)^m \cdot \sqrt{\frac{2l + 1}{4\pi} \cdot \frac{(l-m)!}{(l+m)!}} \cdot \vec{\sigma} = f_{\text{ang}}(0, 0, \vec{\theta}, \vec{\phi}) = (-1)^0 \cdot \sqrt{\frac{2 \cdot 0 + 1}{4\pi} \cdot \frac{(1-0)!}{(1+0)!}} \cdot \vec{\sigma} = 0.28209 \cdot \vec{\sigma}$

l = 1

$\mathcal{\vec{R}} = \xi\left(e^{-\frac{\vec{\rho}}{2}}\right)(\vec{\rho})^{l} f_{\text{lag}}(\beta, \gamma, \vec{\rho}) = 0.034021\left(e^{-\frac{\vec{\rho}}{2}}\right)(\vec{\rho})^{1} f_{\text{lag}}(0, 3, \vec{\rho})$

$\beta = (n-l-1) = (2-1-1) = 0$

$\gamma = (2l + 1) = (2 \cdot 1 + 1) = 3$

$\lambda = (n + l) = (2 + 1) = 3$

$\xi = \sqrt{\frac{\alpha^3 \beta!}{2n (n+1)!}} \cdot \frac{1}{\lambda!} = \sqrt{\frac{1^3 \cdot 0!}{2 \cdot 2 (2+1)!}} \cdot \frac{1}{3!} = 0.034021$

$\vec{\rho} = \alpha \vec{r} = 1 \vec{r}$

m = -1

$\vec{\sigma} = e^{i|m|\vec{\phi}} \cdot f_{\text{leg}}(l, |m|, \cos(\vec{\theta})) = e^{i|-1|\vec{\phi}} \cdot f_{\text{leg}}(1, |-1|, \cos(\vec{\theta}))$

$\mathcal{\vec{Y}} = f_{\text{ang}}(l, m, \vec{\theta}, \vec{\phi}) = \sqrt{2}(-1)^m(-1)^{|m|} \cdot \sqrt{\frac{2l + 1}{4\pi} \cdot \frac{(1-|m|)!}{(1+|m|)!}} \cdot \text{imag}(\vec{\sigma}) =$

$f_{\text{ang}}(1, -1, \vec{\theta}, \vec{\phi}) = \sqrt{2}(-1)^{-1}(-1)^{|-1|} \cdot \sqrt{\frac{2 \cdot 1 + 1}{4\pi} \cdot \frac{(1-|-1|)!}{(1+|-1|)!}} \cdot \text{imag}(\vec{\sigma}) = 0.4886 \cdot \vec{\sigma}$

m = 0

$\vec{\sigma} = e^{im\vec{\phi}} \cdot f_{\text{leg}}(l, m, \cos(\vec{\theta})) = e^{i0\vec{\phi}} \cdot f_{\text{leg}}(1, 0, \cos(\vec{\theta}))$

$\mathcal{\vec{Y}}$ = $f_{\text{ang}}(l, m, \vec{\theta}, \vec{\phi})$ = $(-1)^m \cdot \sqrt{\frac{2l + 1}{4\pi} \cdot \frac{(l-m)!}{(l+m)!}} \cdot \vec{\sigma}$ = $f_{\text{ang}}(1, 0, \vec{\theta}, \vec{\phi})$ = $(-1)^0 \cdot \sqrt{\frac{2 \cdot 1 + 1}{4\pi} \cdot \frac{(1-0)!}{(1+0)!}} \cdot \vec{\sigma}$ = $0.4886 \cdot \vec{\sigma}$

m = 1

$\vec{\sigma} = e^{im\vec{\phi}} \cdot f_{\text{leg}}(l, m, \cos(\vec{\theta})) = e^{i1\vec{\phi}} \cdot f_{\text{leg}}(1, 1, \cos(\vec{\theta}))$

$\mathcal{\vec{Y}} = f_{\text{ang}}(l, m, \vec{\theta}, \vec{\phi}) = \sqrt{2}(-1)^{m}(-1)^{m} \cdot \sqrt{\frac{2l + 1}{4\pi} \cdot \frac{(l-m)!}{(l+m)!}} \cdot \text{real}(\vec{\sigma}) = f_{\text{ang}}(1, 1, \vec{\theta}, \vec{\phi}) = \sqrt{2}(-1)^{1}(-1)^{1} \cdot \sqrt{\frac{2 \cdot 1 + 1}{4\pi} \cdot \frac{(1-1)!}{(1+1)!}} \cdot \text{real}(\vec{\sigma}) = 0.4886 \cdot \vec{\sigma}$

n = 3

$Z=1, a_{0}=1$

$\alpha = \frac{2Z}{n \cdot a_{0}} = \frac{2 \cdot 1}{3_x1} = 0.66667$

l = 0

$\mathcal{\vec{R}} = \xi\left(e^{-\frac{\vec{\rho}}{2}}\right)(\vec{\rho})^{l} f_{\text{lag}}(\beta, \gamma, \vec{\rho}) = 0.010692\left(e^{-\frac{\vec{\rho}}{2}}\right)(\vec{\rho})^{0} f_{\text{lag}}(2, 1, \vec{\rho})$

$\beta = (n-l-1) = (3-0-1) = 2$

$\gamma = (2l + 1) = (2 \cdot 0 + 1) = 1$

$\lambda = (n + l) = (3 + 0) = 3$

$\xi = \sqrt{\frac{\alpha^3 \beta!}{2n (n+1)!}} \cdot \frac{1}{\lambda!} = \sqrt{\frac{0.66667^3 \cdot 2!}{2 \cdot 3 (3+1)!}} \cdot \frac{1}{3!} = 0.010692$

$\vec{\rho} = \alpha \vec{r} = 0.66667 \vec{r}$

m = 0

$\vec{\sigma} = e^{im\vec{\phi}} \cdot f_{\text{leg}}(l, m, \cos(\vec{\theta})) = e^{i0\vec{\phi}} \cdot f_{\text{leg}}(0, 0, \cos(\vec{\theta}))$

$\mathcal{\vec{Y}} = f_{\text{ang}}(l, m, \vec{\theta}, \vec{\phi}) = (-1)^m \cdot \sqrt{\frac{2l + 1}{4\pi} \cdot \frac{(l-m)!}{(l+m)!}} \cdot \vec{\sigma} = f_{\text{ang}}(0, 0, \vec{\theta}, \vec{\phi}) = (-1)^0 \cdot \sqrt{\frac{2 \cdot 0 + 1}{4\pi} \cdot \frac{(1-0)!}{(1+0)!}} \cdot \vec{\sigma} = 0.28209 \cdot \vec{\sigma}$

l = 1

$\mathcal{\vec{R}} = \xi\left(e^{-\frac{\vec{\rho}}{2}}\right)(\vec{\rho})^{l} f_{\text{lag}}(\beta, \gamma, \vec{\rho}) = 0.00189\left(e^{-\frac{\vec{\rho}}{2}}\right)(\vec{\rho})^{1} f_{\text{lag}}(1, 3, \vec{\rho})$

$\beta = (n-l-1) = (3-1-1) = 1$

$\gamma = (2l + 1) = (2 \cdot 1 + 1) = 3$

$\lambda = (n + l) = (3 + 1) = 4$

$\xi = \sqrt{\frac{\alpha^3 \beta!}{2n (n+1)!}} \cdot \frac{1}{\lambda!} = \sqrt{\frac{0.66667^3 \cdot 1!}{2 \cdot 3 (3+1)!}} \cdot \frac{1}{4!} = 0.00189$

$\vec{\rho} = \alpha \vec{r} = 0.66667 \vec{r}$

m = -1

$\vec{\sigma} = e^{i|m|\vec{\phi}} \cdot f_{\text{leg}}(l, |m|, \cos(\vec{\theta})) = e^{i|-1|\vec{\phi}} \cdot f_{\text{leg}}(1, |-1|, \cos(\vec{\theta}))$

$\mathcal{\vec{Y}} = f_{\text{ang}}(l, m, \vec{\theta}, \vec{\phi}) = \sqrt{2}(-1)^{m}(-1)^{|m|} \cdot \sqrt{\frac{2l + 1}{4\pi} \cdot \frac{(1-|m|)!}{(1+|m|)!}} \cdot \text{imag}(\vec{\sigma}) = f_{\text{ang}}(1, -1, \vec{\theta}, \vec{\phi}) = \sqrt{2}(-1)^{-1}(-1)^{|-1|} \cdot \sqrt{\frac{2 \cdot 1 + 1}{4\pi} \cdot \frac{(1-|-1|)!}{(1+|-1|)!}} \cdot \text{imag}(\vec{\sigma}) = 0.4886 \cdot \vec{\sigma}$

m = 0

$\vec{\sigma} = e^{im\vec{\phi}} \cdot f_{\text{leg}}(l, m, \cos(\vec{\theta})) = e^{i0\vec{\phi}} \cdot f_{\text{leg}}(1, 0, \cos(\vec{\theta}))$

$\mathcal{\vec{Y}} = f_{\text{ang}}(l, m, \vec{\theta}, \vec{\phi}) = (-1)^m \cdot \sqrt{\frac{2l + 1}{4\pi} \cdot \frac{(l-m)!}{(l+m)!}} \cdot \vec{\sigma} = f_{\text{ang}}(1, 0, \vec{\theta}, \vec{\phi}) = (-1)^0 \cdot \sqrt{\frac{2 \cdot 1 + 1}{4\pi} \cdot \frac{(1-0)!}{(1+0)!}} \cdot \vec{\sigma} = 0.4886 \cdot \vec{\sigma}$

m = 1

l = 2

m = -2

m = -1

m = 0

m = 1

m = 2

n = 4

l = 0

m = 0

l = 1

m = -1

m = 0

m = 1

l = 2

m = -2

m = -1

m = 0

m = 1

m = 2

l = 3

m = -3

m = -2

m = -1

m = 0

m = 1

m = 2

m = 3

n = 5

l = 0

m = 0

l = 1

m = -1

m = 0

m = 1

l = 2

m = -2

m = -1

m = 0

m = 1

m = 2

l = 3

m = -3

m = -2

m = -1

m = 0

m = 1

m = 2

m = 3

n = 6

l = 0

m = 0

l = 1

m = -1

m = 0

m = 1

l = 2

m = -2

m = -1

m = 0

m = 1

m = 2

l = 3

m = -3

m = -2

m = -1

m = 0

m = 1

m = 2

m = 3

n = 7

l = 0

m = 0

l = 1

m = -1

m = 0

m = 1

l = 2

m = -2

m = -1

m = 0

m = 1

m = 2

l = 3

m = -3

m = -2

m = -1

m = 0

m = 1

m = 2

m = 3

Equações

A função de ondas é:

$\vec{\psi} = \mathcal{\vec{R}} \cdot \mathcal{\vec{Y}}$ (I)

 

onde temos a função de ondas radial:

$\mathcal{\vec{R}} = f_{R}(Z,n,l,a0,\vec{r}) = \xi(e^{-\frac{\vec{\rho}}{2}})(\vec{\rho})^{l}f_{lag}(\beta,\gamma,\vec{\rho})$ (II)

 

em que:

$\vec{\rho} = f_{\rho}(\alpha\vec{r}) = \alpha\vec{r}$ (III)

 

$\alpha = f_{\alpha}(Z,n,a_0) = \frac{2Z}{n \cdot a_0}$ (IV)

 

$\beta = f_{\beta}(n,l) = (n-l-1)$ (V)

 

$\gamma = f_{\gamma}(l) = (2l+1)$ (VI)

 

$\lambda = f_{\lambda}(\beta,\gamma) = (\beta + \gamma)$ (VII)

 

$ \xi = f_{\xi}(n,\alpha,\beta,\lambda) = \sqrt{\frac{\alpha^{3}\beta!}{2n(n+1)!}} \cdot \frac{1}{\lambda!}$ (VIII)

 

e a função de ondas angular:

$\mathcal{\vec{Y}} = f_{Y}(l,|m|,\vec{\theta},\vec{\phi})$

$\sqrt{2}(-1)^{m}(-1)^{|m|}\sqrt{\frac{2l+1}{4\\pi}\frac{(1-|m|)!}{(1+|m|)!}}\ \text{imag}(\vec{\sigma})$

∀m<0

$ (-1)^{m} \sqrt{\frac{2l+1}{4\pi} \frac{(1-m)!}{(1+m)!}} \ \vec{\sigma}$

∀m=0

$ \sqrt{2}(-1)^{m}(-1)^{|m|}\sqrt{\\frac{2l+1}{4\pi}\frac{(1-m)!}{(1+|m|)!}}\ \text{real}(\vec{\sigma})$

∀m>0
(IX)

 

em que:

$\vec{\sigma} = f_{\vec{\sigma}}(l,m,\vec{\theta},\vec{\phi}) = e^{i|m|\vec{\\phi}} \cdot f_{\text{leg}}(l,|m|,\cos(\vec{\theta}))$ (X)

 

Introdução

MQML - Mecânica Quântica com MATLAB - foi produzido com a linguagem MATLAB usando o software OCTAVE, utilizando como base o algoritmo de Peter Van Alem na página Hidrogen Orbitals do site MathWorks, disponível em https://www.mathworks.com/matlabcentral/fileexchange/64274-hydrogen-orbitals.

Cálculos e 3D

  • Introdução
  • Equações
  • Ψ = R . Y

Teoria

  • Introdução
  • A mecânica onduladória de Schrödinger
  • Postulados da Mecânica Quântica
  • A equação de Schrödinger para o átomo de hidrogênio
  • O número magnético m
  • O número quântico azimutal l
  • O número quântico principal n
  • A função de ondas do hidrogênio, Ψnlm: os orbitais.
  • A função de distribuição radial
  • O espectro de energia