Ψ = R . Y
n = 1
$Z=1, a_{0}=1$
$\alpha=\frac{2Z}{n.a_{0}}=\frac{2 \cdot 1}{1_x1}=2$
l = 0
$\mathcal{\vec{R}} = \xi(e^{-\frac{\vec{\rho}}{2}})(\vec{\rho})^{l}f_{\text{lag}}(\beta,\gamma,\vec{\rho}) = 1.4142(e^{-\frac{\vec{\rho}}{2}})(\vec{\rho})^{0}f_{\text{lag}}(0,1,\vec{\rho})$
$\beta = (n-l-1) = (1-0-1) = 0$
$\gamma = (2l + 1) = (2 \cdot 0 + 1) = 1$
$\lambda = (n + l) = (1 + 0) = 1$
$\xi = \sqrt{\frac{\alpha^{3} \beta!}{2n (n+1)!}} \cdot \frac{1}{\lambda!} = \sqrt{\frac{2^{3} \cdot 0!}{2 \cdot 1 (1+1)!}} \cdot \frac{1}{1!} = 1.4142$
$\vec{\rho} = \alpha \vec{r} = 2\vec{r}$
m = 0
$\vec{\sigma} = e^{im\vec{\phi}} \cdot f_{\text{leg}}(l,m,\cos(\vec{\theta})) = e^{i0\vec{\phi}} \cdot f_{\text{leg}}(0,0,\cos(\vec{\theta}))$
$\mathcal{\vec{Y}} = f_{\text{ang}}(l,m,\vec{\theta},\vec{\phi}) = (-1)^m \cdot \sqrt{\frac{2l + 1}{4\pi} \cdot \frac{(l-m)!}{(l+m)!}} \cdot \vec{\sigma} = f_{\text{ang}}(0,0,\vec{\theta},\vec{\phi}) = (-1)^0 \cdot \sqrt{\frac{2 \cdot 0 + 1}{4\pi} \cdot \frac{(1-0)!}{(1+0)!}} \cdot \vec{\sigma} = 0.28209 \cdot \vec{\sigma}$
n = 2
$Z=1, a_{0}=1$
$\alpha = \frac{2Z}{n \cdot a_{0}} = \frac{2 \cdot 1}{2_x1} = 1$
l = 0
$\mathcal{\vec{R}} = \xi\left(e^{-\frac{\vec{\rho}}{2}}\right)(\vec{\rho})^{l} f_{\text{lag}}(\beta, \gamma, \vec{\rho}) = 0.10206\left(e^{-\frac{\vec{\rho}}{2}}\right)(\vec{\rho})^{0} f_{\text{lag}}(1, 1, \vec{\rho})$
$\beta = (n-l-1) = (2-0-1) = 1$
$\gamma = (2l + 1) = (2 \cdot 0 + 1) = 1$
$\lambda = (n + l) = (2 + 0) = 2$
$\xi = \sqrt{\frac{\alpha^3 \beta!}{2n (n+1)!}} \cdot \frac{1}{\lambda!} = \sqrt{\frac{1^3 \cdot 1!}{2 \cdot 2 (2+1)!}} \cdot \frac{1}{2!} = 0.10206$
$\vec{\rho} = \alpha \vec{r} = 1 \vec{r}$
m = 0
$\vec{\sigma} = e^{im\vec{\phi}} \cdot f_{\text{leg}}(l, m, \cos(\vec{\theta})) = e^{i0\vec{\phi}} \cdot f_{\text{leg}}(0, 0, \cos(\vec{\theta}))$
$\mathcal{\vec{Y}} = f_{\text{ang}}(l, m, \vec{\theta}, \vec{\phi}) = (-1)^m \cdot \sqrt{\frac{2l + 1}{4\pi} \cdot \frac{(l-m)!}{(l+m)!}} \cdot \vec{\sigma} = f_{\text{ang}}(0, 0, \vec{\theta}, \vec{\phi}) = (-1)^0 \cdot \sqrt{\frac{2 \cdot 0 + 1}{4\pi} \cdot \frac{(1-0)!}{(1+0)!}} \cdot \vec{\sigma} = 0.28209 \cdot \vec{\sigma}$
l = 1
$\mathcal{\vec{R}} = \xi\left(e^{-\frac{\vec{\rho}}{2}}\right)(\vec{\rho})^{l} f_{\text{lag}}(\beta, \gamma, \vec{\rho}) = 0.034021\left(e^{-\frac{\vec{\rho}}{2}}\right)(\vec{\rho})^{1} f_{\text{lag}}(0, 3, \vec{\rho})$
$\beta = (n-l-1) = (2-1-1) = 0$
$\gamma = (2l + 1) = (2 \cdot 1 + 1) = 3$
$\lambda = (n + l) = (2 + 1) = 3$
$\xi = \sqrt{\frac{\alpha^3 \beta!}{2n (n+1)!}} \cdot \frac{1}{\lambda!} = \sqrt{\frac{1^3 \cdot 0!}{2 \cdot 2 (2+1)!}} \cdot \frac{1}{3!} = 0.034021$
$\vec{\rho} = \alpha \vec{r} = 1 \vec{r}$
m = -1
$\vec{\sigma} = e^{i|m|\vec{\phi}} \cdot f_{\text{leg}}(l, |m|, \cos(\vec{\theta})) = e^{i|-1|\vec{\phi}} \cdot f_{\text{leg}}(1, |-1|, \cos(\vec{\theta}))$
$\mathcal{\vec{Y}} = f_{\text{ang}}(l, m, \vec{\theta}, \vec{\phi}) = \sqrt{2}(-1)^m(-1)^{|m|} \cdot \sqrt{\frac{2l + 1}{4\pi} \cdot \frac{(1-|m|)!}{(1+|m|)!}} \cdot \text{imag}(\vec{\sigma}) =$
$f_{\text{ang}}(1, -1, \vec{\theta}, \vec{\phi}) = \sqrt{2}(-1)^{-1}(-1)^{|-1|} \cdot \sqrt{\frac{2 \cdot 1 + 1}{4\pi} \cdot \frac{(1-|-1|)!}{(1+|-1|)!}} \cdot \text{imag}(\vec{\sigma}) = 0.4886 \cdot \vec{\sigma}$
m = 0
$\vec{\sigma} = e^{im\vec{\phi}} \cdot f_{\text{leg}}(l, m, \cos(\vec{\theta})) = e^{i0\vec{\phi}} \cdot f_{\text{leg}}(1, 0, \cos(\vec{\theta}))$
$\mathcal{\vec{Y}}$ = $f_{\text{ang}}(l, m, \vec{\theta}, \vec{\phi})$ = $(-1)^m \cdot \sqrt{\frac{2l + 1}{4\pi} \cdot \frac{(l-m)!}{(l+m)!}} \cdot \vec{\sigma}$ = $f_{\text{ang}}(1, 0, \vec{\theta}, \vec{\phi})$ = $(-1)^0 \cdot \sqrt{\frac{2 \cdot 1 + 1}{4\pi} \cdot \frac{(1-0)!}{(1+0)!}} \cdot \vec{\sigma}$ = $0.4886 \cdot \vec{\sigma}$
m = 1
$\vec{\sigma} = e^{im\vec{\phi}} \cdot f_{\text{leg}}(l, m, \cos(\vec{\theta})) = e^{i1\vec{\phi}} \cdot f_{\text{leg}}(1, 1, \cos(\vec{\theta}))$
$\mathcal{\vec{Y}} = f_{\text{ang}}(l, m, \vec{\theta}, \vec{\phi}) = \sqrt{2}(-1)^{m}(-1)^{m} \cdot \sqrt{\frac{2l + 1}{4\pi} \cdot \frac{(l-m)!}{(l+m)!}} \cdot \text{real}(\vec{\sigma}) = f_{\text{ang}}(1, 1, \vec{\theta}, \vec{\phi}) = \sqrt{2}(-1)^{1}(-1)^{1} \cdot \sqrt{\frac{2 \cdot 1 + 1}{4\pi} \cdot \frac{(1-1)!}{(1+1)!}} \cdot \text{real}(\vec{\sigma}) = 0.4886 \cdot \vec{\sigma}$
n = 3
$Z=1, a_{0}=1$
$\alpha = \frac{2Z}{n \cdot a_{0}} = \frac{2 \cdot 1}{3_x1} = 0.66667$
l = 0
$\mathcal{\vec{R}} = \xi\left(e^{-\frac{\vec{\rho}}{2}}\right)(\vec{\rho})^{l} f_{\text{lag}}(\beta, \gamma, \vec{\rho}) = 0.010692\left(e^{-\frac{\vec{\rho}}{2}}\right)(\vec{\rho})^{0} f_{\text{lag}}(2, 1, \vec{\rho})$
$\beta = (n-l-1) = (3-0-1) = 2$
$\gamma = (2l + 1) = (2 \cdot 0 + 1) = 1$
$\lambda = (n + l) = (3 + 0) = 3$
$\xi = \sqrt{\frac{\alpha^3 \beta!}{2n (n+1)!}} \cdot \frac{1}{\lambda!} = \sqrt{\frac{0.66667^3 \cdot 2!}{2 \cdot 3 (3+1)!}} \cdot \frac{1}{3!} = 0.010692$
$\vec{\rho} = \alpha \vec{r} = 0.66667 \vec{r}$
m = 0
$\vec{\sigma} = e^{im\vec{\phi}} \cdot f_{\text{leg}}(l, m, \cos(\vec{\theta})) = e^{i0\vec{\phi}} \cdot f_{\text{leg}}(0, 0, \cos(\vec{\theta}))$
$\mathcal{\vec{Y}} = f_{\text{ang}}(l, m, \vec{\theta}, \vec{\phi}) = (-1)^m \cdot \sqrt{\frac{2l + 1}{4\pi} \cdot \frac{(l-m)!}{(l+m)!}} \cdot \vec{\sigma} = f_{\text{ang}}(0, 0, \vec{\theta}, \vec{\phi}) = (-1)^0 \cdot \sqrt{\frac{2 \cdot 0 + 1}{4\pi} \cdot \frac{(1-0)!}{(1+0)!}} \cdot \vec{\sigma} = 0.28209 \cdot \vec{\sigma}$
l = 1
$\mathcal{\vec{R}} = \xi\left(e^{-\frac{\vec{\rho}}{2}}\right)(\vec{\rho})^{l} f_{\text{lag}}(\beta, \gamma, \vec{\rho}) = 0.00189\left(e^{-\frac{\vec{\rho}}{2}}\right)(\vec{\rho})^{1} f_{\text{lag}}(1, 3, \vec{\rho})$
$\beta = (n-l-1) = (3-1-1) = 1$
$\gamma = (2l + 1) = (2 \cdot 1 + 1) = 3$
$\lambda = (n + l) = (3 + 1) = 4$
$\xi = \sqrt{\frac{\alpha^3 \beta!}{2n (n+1)!}} \cdot \frac{1}{\lambda!} = \sqrt{\frac{0.66667^3 \cdot 1!}{2 \cdot 3 (3+1)!}} \cdot \frac{1}{4!} = 0.00189$
$\vec{\rho} = \alpha \vec{r} = 0.66667 \vec{r}$
m = -1
$\vec{\sigma} = e^{i|m|\vec{\phi}} \cdot f_{\text{leg}}(l, |m|, \cos(\vec{\theta})) = e^{i|-1|\vec{\phi}} \cdot f_{\text{leg}}(1, |-1|, \cos(\vec{\theta}))$
$\mathcal{\vec{Y}} = f_{\text{ang}}(l, m, \vec{\theta}, \vec{\phi}) = \sqrt{2}(-1)^{m}(-1)^{|m|} \cdot \sqrt{\frac{2l + 1}{4\pi} \cdot \frac{(1-|m|)!}{(1+|m|)!}} \cdot \text{imag}(\vec{\sigma}) = f_{\text{ang}}(1, -1, \vec{\theta}, \vec{\phi}) = \sqrt{2}(-1)^{-1}(-1)^{|-1|} \cdot \sqrt{\frac{2 \cdot 1 + 1}{4\pi} \cdot \frac{(1-|-1|)!}{(1+|-1|)!}} \cdot \text{imag}(\vec{\sigma}) = 0.4886 \cdot \vec{\sigma}$
m = 0
$\vec{\sigma} = e^{im\vec{\phi}} \cdot f_{\text{leg}}(l, m, \cos(\vec{\theta})) = e^{i0\vec{\phi}} \cdot f_{\text{leg}}(1, 0, \cos(\vec{\theta}))$
$\mathcal{\vec{Y}} = f_{\text{ang}}(l, m, \vec{\theta}, \vec{\phi}) = (-1)^m \cdot \sqrt{\frac{2l + 1}{4\pi} \cdot \frac{(l-m)!}{(l+m)!}} \cdot \vec{\sigma} = f_{\text{ang}}(1, 0, \vec{\theta}, \vec{\phi}) = (-1)^0 \cdot \sqrt{\frac{2 \cdot 1 + 1}{4\pi} \cdot \frac{(1-0)!}{(1+0)!}} \cdot \vec{\sigma} = 0.4886 \cdot \vec{\sigma}$
m = 1
l = 2
m = -2
m = -1
m = 0
m = 1
m = 2
n = 4
l = 0
m = 0
l = 1
m = -1
m = 0
m = 1
l = 2
m = -2
m = -1
m = 0
m = 1
m = 2
l = 3
m = -3
m = -2
m = -1
m = 0
m = 1
m = 2
m = 3
n = 5
l = 0
m = 0
l = 1
m = -1
m = 0
m = 1
l = 2
m = -2
m = -1
m = 0
m = 1
m = 2
l = 3
m = -3
m = -2
m = -1
m = 0
m = 1
m = 2
m = 3
n = 6
l = 0
m = 0
l = 1
m = -1
m = 0
m = 1
l = 2
m = -2
m = -1
m = 0
m = 1
m = 2
l = 3
m = -3
m = -2
m = -1
m = 0
m = 1
m = 2
m = 3
n = 7
l = 0
m = 0
l = 1
m = -1
m = 0
m = 1
l = 2
m = -2
m = -1
m = 0
m = 1
m = 2
l = 3
m = -3
m = -2
m = -1
m = 0
m = 1
m = 2
m = 3
Equações
A função de ondas é:
$\vec{\psi} = \mathcal{\vec{R}} \cdot \mathcal{\vec{Y}}$ | (I) |
onde temos a função de ondas radial:
$\mathcal{\vec{R}} = f_{R}(Z,n,l,a0,\vec{r}) = \xi(e^{-\frac{\vec{\rho}}{2}})(\vec{\rho})^{l}f_{lag}(\beta,\gamma,\vec{\rho})$ | (II) |
em que:
$\vec{\rho} = f_{\rho}(\alpha\vec{r}) = \alpha\vec{r}$ | (III) |
$\alpha = f_{\alpha}(Z,n,a_0) = \frac{2Z}{n \cdot a_0}$ | (IV) |
$\beta = f_{\beta}(n,l) = (n-l-1)$ | (V) |
$\gamma = f_{\gamma}(l) = (2l+1)$ | (VI) |
$\lambda = f_{\lambda}(\beta,\gamma) = (\beta + \gamma)$ | (VII) |
$ \xi = f_{\xi}(n,\alpha,\beta,\lambda) = \sqrt{\frac{\alpha^{3}\beta!}{2n(n+1)!}} \cdot \frac{1}{\lambda!}$ | (VIII) |
e a função de ondas angular:
|
(IX) |
em que:
$\vec{\sigma} = f_{\vec{\sigma}}(l,m,\vec{\theta},\vec{\phi}) = e^{i|m|\vec{\\phi}} \cdot f_{\text{leg}}(l,|m|,\cos(\vec{\theta}))$ | (X) |
Introdução
MQML - Mecânica Quântica com MATLAB - foi produzido com a linguagem MATLAB usando o software OCTAVE, utilizando como base o algoritmo de Peter Van Alem na página Hidrogen Orbitals do site MathWorks, disponível em https://www.mathworks.com/matlabcentral/fileexchange/64274-hydrogen-orbitals.