A função de ondas é:

$\vec{\psi} = \mathcal{\vec{R}} \cdot \mathcal{\vec{Y}}$ (I)

 

onde temos a função de ondas radial:

$\mathcal{\vec{R}} = f_{R}(Z,n,l,a0,\vec{r}) = \xi(e^{-\frac{\vec{\rho}}{2}})(\vec{\rho})^{l}f_{lag}(\beta,\gamma,\vec{\rho})$ (II)

 

em que:

$\vec{\rho} = f_{\rho}(\alpha\vec{r}) = \alpha\vec{r}$ (III)

 

$\alpha = f_{\alpha}(Z,n,a_0) = \frac{2Z}{n \cdot a_0}$ (IV)

 

$\beta = f_{\beta}(n,l) = (n-l-1)$ (V)

 

$\gamma = f_{\gamma}(l) = (2l+1)$ (VI)

 

$\lambda = f_{\lambda}(\beta,\gamma) = (\beta + \gamma)$ (VII)

 

$ \xi = f_{\xi}(n,\alpha,\beta,\lambda) = \sqrt{\frac{\alpha^{3}\beta!}{2n(n+1)!}} \cdot \frac{1}{\lambda!}$ (VIII)

 

e a função de ondas angular:

$\mathcal{\vec{Y}} = f_{Y}(l,|m|,\vec{\theta},\vec{\phi})$

$\sqrt{2}(-1)^{m}(-1)^{|m|}\sqrt{\frac{2l+1}{4\\pi}\frac{(1-|m|)!}{(1+|m|)!}}\ \text{imag}(\vec{\sigma})$

∀m<0

$ (-1)^{m} \sqrt{\frac{2l+1}{4\pi} \frac{(1-m)!}{(1+m)!}} \ \vec{\sigma}$

∀m=0

$ \sqrt{2}(-1)^{m}(-1)^{|m|}\sqrt{\\frac{2l+1}{4\pi}\frac{(1-m)!}{(1+|m|)!}}\ \text{real}(\vec{\sigma})$

∀m>0
(IX)

 

em que:

$\vec{\sigma} = f_{\vec{\sigma}}(l,m,\vec{\theta},\vec{\phi}) = e^{i|m|\vec{\\phi}} \cdot f_{\text{leg}}(l,|m|,\cos(\vec{\theta}))$ (X)