A função de ondas é:
$\vec{\psi} = \mathcal{\vec{R}} \cdot \mathcal{\vec{Y}}$ | (I) |
onde temos a função de ondas radial:
$\mathcal{\vec{R}} = f_{R}(Z,n,l,a0,\vec{r}) = \xi(e^{-\frac{\vec{\rho}}{2}})(\vec{\rho})^{l}f_{lag}(\beta,\gamma,\vec{\rho})$ | (II) |
em que:
$\vec{\rho} = f_{\rho}(\alpha\vec{r}) = \alpha\vec{r}$ | (III) |
$\alpha = f_{\alpha}(Z,n,a_0) = \frac{2Z}{n \cdot a_0}$ | (IV) |
$\beta = f_{\beta}(n,l) = (n-l-1)$ | (V) |
$\gamma = f_{\gamma}(l) = (2l+1)$ | (VI) |
$\lambda = f_{\lambda}(\beta,\gamma) = (\beta + \gamma)$ | (VII) |
$ \xi = f_{\xi}(n,\alpha,\beta,\lambda) = \sqrt{\frac{\alpha^{3}\beta!}{2n(n+1)!}} \cdot \frac{1}{\lambda!}$ | (VIII) |
e a função de ondas angular:
|
(IX) |
em que:
$\vec{\sigma} = f_{\vec{\sigma}}(l,m,\vec{\theta},\vec{\phi}) = e^{i|m|\vec{\\phi}} \cdot f_{\text{leg}}(l,|m|,\cos(\vec{\theta}))$ | (X) |